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Abstract. We present a simple model for the late time stabilization of extra dimensions. The basic idea is
that brane solutions wrapped around extra dimensions, which is allowed by string theory, will resist ex-
pansion due to their winding mode. The momentum modes in principle work in the opposite way. It is this
interplay that leads to dynamical stabilization. We use the idea of democratic wrapping, where in a given
decimation of extra dimensions, all possible winding cases are considered. To further simplify the study we
assumed a symmetric decimation in which the total number of extra dimensions is taken to be Np where N
can be called the order of the decimation. We also assumed that extra dimensions all have the topology of
tori. We show that with these rather conservative assumptions, there exist solutions to the field equations in
which the extra dimensions are stabilized and that the conditions do not depend on p. This fact means that
there exists at least one solution to the asymmetric decimation case. If we denote the number of observed
space dimensions (excluding time) by m, the condition for stabilization is m≥ 3 for pure Einstein gravity
andm≤ 3 for dilaton gravity massaged by a string theory parameter, namely the dilaton coupling to branes.

PACS. 98.80.-k; 11.25.Uv

1 Introduction

String theory requires for its consistency extra dimensions
that are bound to be very small compared to the size of
observed dimensions. It is therefore of considerable impor-
tance to look for cosmological models in which this can
be realized or at least not violently denied. String theory
also allows for compact objects (branes) which could be
wrapped around compact extra dimensions. These branes’
winding modes will in general resist expansion in the same
way as a rubber band would resist expansion of a balloon
around which it is wrapped. The momentum (vibration)
modes on the other hand would tend to enlarge the size of
the brane. These two forces might in principle yield sta-
bilization of the extra dimensions realized in a dynamical
way. This idea is reminiscent of the Brandenberger–Vafa
mechanism presented in [8]. In this letter we enlarge the
mass of knowledge on a model which was in development
during the past couple of years [1–7]. The interested reader
should also check the literature on brane gas cosmology [9–
26]. For further references one could check a recent review
on the topic of brane gas cosmology [27]. These approaches
are in essence different from the brane-world scenarios (see
for example [28] for a review on the topic within the con-
text of cosmology) which also make use of extra dimensions
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and try to reformulate the hierarchy problem in particle
physics and other phenomena.
An interesting puzzle which could be addressed in any

theory involving extra dimensions is the dimensionality of
the observed space. This would mean to have an under-
standing of the question: why is the number of large di-
mensions three? In this paper we address the possibility
that the requirement of stability (that is, no or a very small
cosmological evolution present) of extra dimensions in gen-
eral plus that of the dilaton in the context of string theory
might give clues to the question. These stabilities are im-
plied by positive observations on the zero or very small
cosmological evolutions of the coupling constants which
are supposed to change if the extra dimensions or the dila-
ton were evolving. The experimental bounds are rather
stringent, so it makes sense to look for theories which in-
corporate absolute stability of extra dimensions and of the
dilaton at least at the classical level. To this end we study
the brane model we present in the context of pure Ein-
stein gravity and then in the context of dilaton gravity.
The bounds on the dimensionalitym of observed space are
different in both theories (we have m ≥ 3 for pure Ein-
stein gravity andm≤ 3 for dilaton gravity with the dilaton
coupling to branes fixed by string theory) and agree only
whenm= 3, which also coincides with a stabilized dilaton.
That is, assuming that the extra dimensions are stabilized
one can think of Einstein gravity as emerging from dila-
ton gravity only when m = 3. On the other hand, taking
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the dilaton to be a constant at the outset is not necessar-
ily compatible with the stability of extra dimensions for
a general choice of m. This result is interesting of its own
and we believe it is a rather solid result for explaining why
the number of observed dimensions is three within the con-
text of extra dimensions and string theory. Unfortunately
this mechanism is not a dynamical one as the one advo-
cated in [29] where the authors claim to explain the fact
thatm= 3 within the dynamics of string theory.1

Therefore we arrive at the concluding result: since ex-
perimentally the stability of the coupling constants re-
quires the stability of extra dimensions and the dilaton, we
havem= 3.
To make things simpler we assume that the extra di-

mensions (however they are partitioned as product spaces)
are tori and hence flat and compact. In view of the lack of
a general principle which would mandate a given wrapping
pattern we use democratic winding as introduced in [5, 6].
To make things clearer let us proceed with an example:
say the extra dimensions are partitioned into three tori of
dimensions p, q and r. The democratic winding scheme
requires us to allow for all possible windings and hence in-
tersections. Namely the winding pattern will be as follows:

(p)qr⊕p(q)r⊕pq(r)⊕ (pq)r⊕p(qr)⊕ q(rp)⊕ (pqr) .

Here parentheses mean that there is a brane of dimen-
sionality equal to the sum of dimensions around which it
wraps. For instance (p)qr stands for a p dimensional brane
wrapping only around the first partition, q(rp) means there
is a p+ r dimensional brane wrapping around the first
and last partition and (pqr) is a p+ q+ r dimensional
brane covering all extra dimensions. For a general deci-
mation pattern the model is complicated. However if we
can show that there is a solution for a symmetric deci-
mation in which the dimensionality of the partitionings
are all the same (say p) and the total number of extra di-
mensions is Np and that this solution is independent of
p, it will in general mean that there is at least one so-
lution to the asymmetric partitioning case. The ideas of
winding democracy and symmetric partitioning were in-
troduced in [5] for pure Einstein gravity and in [6] for
dilaton gravity. It was shown that the stabilization con-
ditions are p independent in both cases. However, in [5]
brane momentum modes were not considered, and there
remained an N dependence on the stabilization condi-
tions, whereas in [6] it was shown that the results really do
not depend on N if one also considers momentum modes.
The main idea of this paper is first to add momentum
modes to the pure Einstein gravity case and coherently
study the two models in such a way as to finally con-

1 After the present manuscript appeared Randall and
Karch [30] came up with another variant [29] of a theory of
why we live in three dimensions. The present manuscript is not
along the same line of reasoning; we simply show that m = 3
is the only possibility if one also requires the stability of ex-
tra dimensions and the dilaton. We simply assume that “some”
number of dimensions are somehow singled out at the outset
but keepm as a parameter to be fixed later on.

trast the conditions imposed on the dimensionality of ob-
served space by the requirement of stabilization of the ex-
tra dimensions.

2 General formalism

Since we are interested in a cosmological model we take our
metric to be

ds2 =−dt2+e2B(t)dx2+
∑

i

e2Ci(t)dy2i . (1)

Here B stands for the scale factor of the observed space
with dimensionality m. The Ci are the scale factors of the
extra dimensions. There are N such factors, each corres-
ponding to p dimensional tori. The total dimensionality of
space-time is d =m+1+Np. Because of the symmetric
decimation pattern we can take all Ci to behave the same
way.
We will also assume that the branes are distributed as

a continuous gas with respect to the directions they are not
wrapping. This makes it possible to use dust-like energy-
momentum tensors. That is, for any energy-momentum
source λ we assume the following form for the energy dens-
ity which is found by the conservation requirement of the
energy-momentum tensor for that particular source2:

ρλ = ρ
0
λ exp

[
−
(
1+ωλB

)
mB−

∑

i

(
1+ωλCi

)
pCi

]
.

(2)

Here the ω are the pressure coefficients. It was shown
in [1–4] that if we consider a homogeneous gas of branes
the winding mode of a p-brane will yield a conserved dust-
like energy-momentum tensor with pressure coefficient −1
along the winding directions and 0 for the other ones. For
example the energy densities of the winding modes of a p-
brane, a 2p-brane and an Np-brane will respectively be

ρp = ρ
0
pe
−mBe−(N−1)pC ,

ρ2p = ρ
0
2pe
−mBe−(N−2)pC ,

ρNp = ρ
0
Npe

−mB .

For the momentum modes the pressure coefficient of
a p-brane can be taken to be 1/p along the winding direc-
tions and vanishing for the rest [2–4]. So the momentum
mode energy densities for the above list will be

ρ̃p = ρ̃
0
pe
−mBe−C−NpC ,

ρ̃2p = ρ̃
0
2pe
−mBe−C−NpC ,

ρ̃Np = ρ̃
0
Npe

−mBe−C−NpC .

This very simple behaviour of the momentum modes
will be a crucial ingredient in proving stabilization. We

2 So the total energy momentum tensor will be a sum of such
separately conserved contributions.
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have also adopted a convention for the initial values of the
energy densities: the ρ0 will correspond to winding modes
and the ρ̃0 will correspond to momentum modes.

2.1 Pure Einstein gravity

The field equations for pure Einstein gravity are

Rµν −
1

2
Rgµν = κ

2Tµν . (3)

With our assumptions the equations of motion for the scale
factors can be cast in the following form (we set κ2 = 1):

Ȧ2 =mḂ2+
∑

i

piĊi
2
+2ρ , (4a)

B̈+ ȦḂ = Tb̂b̂−
1

d−2
T , (4b)

C̈i+ ȦĊi = Tĉiĉi −
1

d−2
T , (4c)

A≡mB+
∑

i

piCi . (4d)

The hatted indices refer to the orthonormal co-ordinates.
Also ρ represents the total energy density and Tµ̂ν̂ are the
components of the total energy-momentum tensor while T
is its trace.
Stabilization of the extra dimensions will imply

Tĉiĉi −
1

d−2
T = 0 . (5)

Considering all the energy-momentum tensors in a de-
mocratic winding scheme will after straightforward algebra
yield the following :

e−mB−NpC

[
1

p
αX−1+

1

d−2

N∑

k=1

βkζkX
kp

]
= 0 , (6)

with X ≡ eC , the scale factor of the extra dimensions, and

α=
N−1∑

i=1

ρ̃0ip+ ρ̃
0
Np/N , (7a)

βk = ρ
0
kp , (7b)

βN = ρ
0
Np/N , (7c)

ζk =N −k(m−1) . (7d)

The difference in the definition of βN is due to the fact that
there is only one brane wrapping over all extra dimensions.
To show that there is stabilization we have to find pos-

itive solutions to the polynomial in (6). In order to study
this we can use Descartes’ sign rule which states that the
positive roots of a polynomial is either equal to the num-
ber of sign changes s of the coefficients or less than s by
a multiple of 2. Since α and βk are all positive numbers
the sign changes will be ruled by ζk. But the ζk are mono-
tonically decreasing by k for a given m, so there can only
be one sign change in the polynomial (6) and hence only

one positive root exists. The worst case therefore is given
by ζN ≥ 0, which would mandate every term to be posi-
tive. This means that to have a sign change we needm≥ 2;
however, form= 2, ζN is zero and ζN−1 > 0.
Consequently the real constraint to have a solution is

m≥ 3 . (8)

This result does not depend onN or on p, so there must
be at least one solution for stabilization even in the case
(very difficult to analyze) for which the decimation of ex-
tra dimensions is not symmetric. It can also be shown that
with these stabilization conditions the observed space ex-
pands with the same power-law (2/m) as pressureless dust.
This is expected since all the brane energy-momentum ten-
sors are pressureless dust for the observed space.

2.2 Dilaton gravity

We can take the action in the presence of a dilaton field φ
coupled to matter to be [4]

S =
1

κ2

∫
dxd
√
−ge−2φ

[
R+4(∇φ)2+eaφLm

]
. (9)

If Lm takes the form of a Lagrangian yielding a dust-
like energy-momentum tensor the field equations are [4]

Rµν +2∇µ∇νφ= e
aφ

[
Tµν −

(
a−2

2

)
ρgµν

]
,

(10a)

R+4∇2φ−4(∇φ)2 =−(a−2)eaφρ , (10b)

which in turn will give the following (we set κ2 = 1):

B̈ =−kḂ+eaφ
[
Tb̂b̂− τρ

]
, (11a)

C̈i+kĊi = e
aφ
[
Tĉiĉi − τρ

]
, (11b)

φ̈=−kφ̇+
1

2
eaφ [T − (d−2)τρ] , (11c)

k2 =mḂ2+
∑

i

piĊi
2
+2eaφρ , (11d)

k ≡mḂ+
∑

i

piĊi−2φ̇ , (11e)

where τ = (a−2)/2. The stabilization condition is

eaφ
[
Tĉiĉi − τρ

]
= 0 . (12)

Similarly to the previous subsection, after considering
all the energy-momentum contributions, this will yield the
following:

eaφ−mB−NpC

[(
1

p
− τN

)
αX−1−

N∑

k=1

βkξkX
kp

]
= 0 .

(13)

Here α and βk are the same parameters as in the previ-
ous subsection, as in (7), and ξk = k+ τN . The discussion
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for a solution is very similar to the previous section. There
can only be one sign change in the polynomial (13) due to
the linear change in ξk. It is easy to show that solutions will
exist for

−1< τ <
1

Np
=⇒−1< τ <

1

d−m−1
. (14)

Again the constraints do not depend on N or p, and
this means that there should at least be one solution to the
stabilization conditions for asymmetric decimations.
Furthermore in [6] it has been shown that the observed

space’s scale factor and the dilaton evolve according to
a power-law ansatz,

B(t)∼ β ln t , (15a)

φ(t) ∼ ϕ ln(t) , (15b)

with

β =−
2τ

1+(m−1)τ2
, (16a)

ϕ=
−2+mβ

2(1+ τ)
=−

1+ τ(m−1)

1+(m−1)τ2
. (16b)

Since we want to use these as late time cosmology solu-
tions we would like to have the scale of the observed space
expanding. Also to not enter the strong coupling regime of
string theory at late times we would like to have a decreas-
ing (or stable) dilaton solution.3 Thus we want β > 0 and
ϕ ≤ 0 in the equation above. These further requirements
will alter the stabilization conditions in the following way:

−
1

m−1
≤ τ < 0 . (17)

In string theory τ =−1/2 for Dp-branes. This in turn
means that

m≤ 3 . (18)

3 Stability

The pure Einstein and dilaton gravity cases share a com-
mon property for the evolution of the extra dimensions.
The equations governing the behaviour of the scale factors
of extra dimensions is always in the following form:

C̈ =−f(t, Ċ)Ċ+ g(t)X−Np−1P (X) , (19)

with againX = eC . The polynomial P (X) has a single pos-
itive root. The general structure of this polynomial is as
follows:

P (X) = 1+a0X+a1X
p+1+ · · ·+aNX

Np+1 , (20)

3 The requirement for a decreasing or stable dilaton is the
phenomenologically favored situation. One could in principle
look for the increasing dilaton case and this can prove to be of
interest in another context. We will not pursue this idea here.

where the constant term comes from the collective momen-
tum modes, the linear term comes from ordinary pressure-
less matter living in the observed space (and hence has zero
pressure coefficients everywhere), and the terms involving
powers of p come from the winding modes. The condition
for stabilization is that after/before the kth term all ak
are negative/positive. Therefore, invoking Descartes’ rule
again, we would have unique solutions for the vanishing of
the derivatives up to the (k−1)th order. Thus P (X) in-
creases starting fromX = 0 and starts decreasing after the
unique solution to P ′(X) = 0, until it reaches the unique
stabilization point P (X0) = 0.
On the other hand the function g(t) is always positive.4

As it stands the equations describe the motion of a par-
ticle under the influence of a position dependent force and
a velocity dependent friction/driving force f . As one could
guess if f < 0, the stabilization might be jeopardized – and
it is, this fact having been numerically substantiated in [4]:
if f < 0 there is a singularity in the field equations in finite
proper time. If one takes a good look at the field equations
in either pure Einstein or dilaton gravity the sign of f is
a constant of motion.5 We therefore should consider the
f > 0 case.
As for the position dependent force we can look for the

potential that gives rise to it

−
dVeff
dX

=X−Np−1P (X) . (21)

The general form of P (X) and Veff(X) are represented
in Figs. 1 and 2. The potential has a unique minimum, and
therefore the stabilization solutions are truly stable since
f > 0 will just bring in the friction. The effective potential
has a very strong repulsive core near the small X region
in the form inverse powers of X, the strongest one coming
from the collective momentum modes. The large X be-
haviour is dominated by the winding mode of the largest
brane in the system; in a democratic wrapping scheme this
would be a term linear in X and would come from the Np-
brane that wraps the entire decimation. These results are
very plausible: the momentum modes are the ones that re-
sist the contraction most, and the largest brane’s winding
mode is the one that most resists expansion.
We thus have shown that the stabilization solution is

a future attractive point given f(t= 0)> 0 and the inter-
nal dimensions will evolve to that point no matter what
the initial conditions are.6 It has also recently been shown
by Kaya [7] that the stabilization point is also dynamically
stable against cosmological perturbations of the metric.

4 Since it is just a positive factor times e−mB .
5 This follows from the definitions of Ȧ and k in (4a), (4d) and
(11d), (11e) respectively.
6 The stability analysis we have exposed here is only valid
in the classical regime. The ultimate analysis should have in-
cluded the effects of quantum fluctuations, which we do not
pursue here since it would require all-out use of string theory.
We advocate on the other hand that the classical stability is
a strong argument, since it actually becomes more and more
valid at later times when string theory becomes less and less
important.
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Fig. 1. The generic form of the stabilization polynomial in (20)

Fig. 2. The generic form of the effective potential defined
in (21)

4 Conclusions and discussions

The analysis of the previous chapter can be summarized as
follows. The late time stabilization of extra dimensions by
the dynamics of Dp-branes require

m≥3 pure Einstein gravity .

m≤3 dilaton gravity (string theory input a= 1) .

The only case in which they would both agree is the
experimentally observed case,m= 3. In this case the dila-
ton is also stabilized and the observed space expands as the
ordinary pressureless dust solution with power 2/3. The
fact that the dilaton stabilizes means that the Einstein
frame and the string frame are the same in the far future.
One of the reasons why two different models yield differ-
ent regimes for stabilization is that one should not really
think that pure Einstein gravity can be obtained from dila-
ton gravity by setting the dilaton to a constant, because
the evolution equation for the dilaton is not necessarily sat-
isfied identically for every parameter of the system. How-
ever, one can think of obtaining pure Einstein gravity from

dilaton gravity by setting the dilaton to a constant when
m= 3.
Since one would like to recover Einstein gravity for low

energies it seems thatm=3 is mandated by stabilization of
extra dimensions.
Although we have confined the present study to the

symmetric decimation of the extra dimensions (each one
having dimensionality p), the fact that the stabilization
condition does not depend on pmeans that there should be
at least one solution to the stabilization equations in the
asymmetric decimation case. So the mechanism is generic.
It is also rather interesting that in the dilaton case we

have found m≤ 3 without requiring that in the early uni-
verse p-branes with p > 2 are annihilated as one would
argue in the case of the Brandenberger–Vafa mechan-
ism. If one would like to apply this constraint of the
Brandenberger-Vafa mechanism to the model of this work
no part of a decimation can have p > 2, and there is simply
no solution for stabilization in this case.
One important point to mention is the possibility to

allow for internal curvature for the extra dimensions. An
in-depth study is not within the scope of this manuscript;
however, a simple analysis shows that the internal curva-
ture frustrates the mechanism we presented. The reason is
that the curvature will bring about a factor of 2ke−2C to
the stabilization polynomials, and, since this term has no
overall e−mB factor, stabilization cannot be achieved as we
pointed out. On the other hand this can also be interpreted
as a hint that extra dimensions have no curvature.
One immediate extension of the work presented here

is the addition of pressureless dust (galaxies, quasars etc.)
in the observed dimensions. Since this form of matter will
bring about a positive term with a factor e−mB to the sta-
bilization polynomial, the mechanism we have presented
will work out as well, at least for Einstein gravity. For dila-
ton gravity on the other hand one will have to know the
coupling amatter of the dilaton to ordinary matter, and this
is not known. However, if the dilaton stabilization occurs
before matter domination, nothing will change.
Among other important extensions one has to study is

the study of the model during the radiation and the early
inflationary eras. Early inflation tends to grow extra di-
mensions as well as the observed dimensions unless one
introduces rather contrived and unmotivated cancellation
mechanisms. Consequently during radiation a shrinking of
the extra dimensions has to occur in order to have them as
small as the experimental bounds mandate. A preliminary
analysis shows this to be true, but we leave an extensive
study for future work. This bounce back of the size of the
extra dimensions can be very useful if used together with
the bounds on the change of the fine structure constant
coming from primordial nucleosynthesis. There could also
be interesting avenues if one includes the present accelara-
tion of the universe.

4.1 Note added

One important assumption we have made in this manu-
script is that the gas of branes wrapping around the extra
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dimensions is dilute and that it is non-interacting. This as-
sumption manifests itself in the derivation of the pressure
coefficients of the winding and momentum modes [1–4] as
they are obtained from a non-interacting action and hence
only kinematical. The dilute, non-interacting, gas assump-
tion also lets us take the full energy-momentum tensor as
a sum of the contribution of different branes. The ther-
modynamics of the brane gas can in principle alter the
pressure coefficients (see for example [31]), but in a per-
turbative scheme these effects should come as corrections
containing higher order string effects. Furthermore it is
very plausible that the dilute gas forms later in cosmolog-
ical evolution when the size of the large dimensions grew
much bigger than the size of extra dimensions. With this
in mind we recall that the main idea and the result of this
paper is the interplay between the stabilization of extra
dimensions, stabilization of the dilaton and the dimension-
ality of the observed space. One could argue that correction
effects should not alter the bound onm, since it is an inte-
ger. In this paper we have only taken one parameter from
string theory: the dilaton coupling to branes a= 1.
Another point related to string theory corrections is at

the Lagrangian level. Higher order string corrections will
in principle yield extra terms in the Lagrangian and in
a low energy point of view they will be manifested as higher
order gravity actions. After this paper appeared, Borunda
and Boubekeur studied the effect of alpha’ corrections in
brane gas cosmology.We refer the interested reader to their
work [32].

Appendix

In this appendix for didactical purposes we would like to
expose the simpler case of N = 1. That is, we assume that
the extra dimensions are lumped in a p dimensional torus.
The energy densities for the brane winding and momentum
modes will be given by

ρp = ρ
0
pe
−mB , (A.1a)

ρ̃p = ρ̃
0
pe
−mB−(1+p)C . (A.1b)

Pure Einstein gravity

The equation for the evolution of the extra dimensions will
be

C̈+ ȦĊ =−
m−2

d−2
ρp+

1

p
ρ̃p . (A.2)

It is obvious from the equation above that in order to
have Ċ = 0 and C̈ = 0 we need to havem≥ 3. The remain-
ing equations for B are

m(m−1)Ḃ2 = 2ρp+2ρ̃p , (A.3a)

B̈+mḂ2 =
1+p

d−2
ρp . (A.3b)

Assuming a power-law ansatz of the form B(t) =
β ln(t)+B0 will yield

β =
2

m
, (A.4)

e−mB0 = 2
d−2

ρ0pm(1+p)
. (A.5)

Dilaton gravity

The caseN = 1 has actually been studied in detail by Ara-
poglu and Kaya [4]. Quoting verbatim from their paper
(where they took a= 1 from the start) they use the follow-
ing ansatz:

φ= φ1 ln(t)+φ0 , (A.6a)

B = b1 ln(t) , (A.6b)

C = C0 , (A.6c)

and we find that using the evolution equations (11a), (11b)
and (11c) we get

b1 =
4

m+3
, φ1 =

2(m−3)

m+3
, (A.7a)

eφ0 =
4(p+2)p

Tw(p+1)(m+3)2
, (A.7b)

e(p+1)C0 =
(p+2)Tm
pTw

, (A.7c)

where Tw = ρ0 and Tm = ρ̃0. With these the constraint
equation (11d) is identically satisfied. As can be checked
the values for φ1 and b1 are in accord with β in (16a) and
ϕ in (16b) for a= 1, meaning τ =−1/2.
Now it is clear that to have a decreasing dilaton, and so

as to not enter the strong coupling regime of string theory
in the far future one has to havem≤ 3.
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